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Introduction  
 
Metabolism is a vital cellular process and its malfunction is a major contributor to human disease. For this 

reason, it is important to construct and investigate metabolic networks. We can safely say that such 

metabolic networks are complex and highly interconnected, therefore system-level computational 

approaches are required to understand metabolic genotype-phenotype relationships. One of the major 

fields of research in systems biology is the reconstruction of these metabolic networks [1-2]. The 

reconstructed network can be used to suggest potential alternatives to known drug targets or could reveal 

the effects and causes of diseases and therapies. 

 To understand the complex behavior of the system we need to translate the metabolic network 

into a dynamical model with rate laws for each enzymatic reaction. These rate laws are defined as 

mathematical expressions which heavily depend on the underlying mechanism of the enzymatic reactions 

and can become quite complex with a large quantity of parameters. There are two main reasons to use 

dynamical models: (1) we wish to gain more knowledge about the system (2) we want to control the 

system. To model the system as accurately as possible, we wish to have a complete and accurate set of 

parameters which characterize the system. This definition is by the fact that some parameters are: (1) 

corrupted by measurement noise (2) influenced by biological variability (3) completely unknown. All 

these factors of uncertainty and missing knowledge lead to problems in the dynamic modeling of 

metabolic networks.  

 To account for these issues we could perform model parameter estimation, also called system 

identification. With the use of measurement data and the model structure we can estimate the parameters 

as accurately as possible, which eventually leads to a dynamic model that can make accurate predictions 

and would be a gain for fundamental research in various fields. 

 

This document gives an overview of the state of the art in the field of system identification in metabolic 

engineering. First the reader will be introduced to the concept of metabolic engineering after which the 

reader will be further instructed about its goals, procedures and limitations. 

 Next the reader will be introduced to the field of metabolic networks and dynamic modeling. The 

reader will be instructed about its goals, procedures and theoretical methods to extract quantitative and 

qualitative information.  

 To translate the metabolic network into a dynamic model one has to define rate laws for each 

reaction and is explained in Chapter 4. The most well-known and topically important rate laws will be 

explained in full detail. Not only shall we derive the mathematical expressions for these rate laws, but we 

will  also spend effort on the epiphany of the method in terms of assumptions and underlying biological 

ideas. The reader will not only see the mathematical derivation, but can also see the types of reaction 

mechanisms we are trying to model. 

 Although much information of the metabolic model and its dynamics has been gathered over 

time, they are still handicapped by uncertain model parameters. As already explained, many limitations 

can lead to inaccurate model predications with respect to the observed measurements. To account for 

these issues we introduce in Chapter 5 different methods to estimate model parameters.  

Chapter 6 discusses the limitations of the described methods, together with the open problems 

and directions of future work. Next we propose to combine some complementing methods to form a 

synergy. Finally a discussion and conclusion will be given. 

 

M.A. Sanders 
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Metabolic Engineering  

2.1 Introduction  
 
The fundamental goal of the methods discussed later is to accurately model metabolism such that we can 

understand its behavior and improve it by engineering. Here we define metabolic engineering, its goals 

and applications. There are external influences on metabolism that are not directly obvious and shall be 

addressed in this chapter. Furthermore there are currently some limitations and challenges in metabolic 

engineering that we are trying to overcome or resolve. At the heart of metabolic engineering lies the 

measurement of parameters to reconstruct the dynamic behavior of the metabolic model. 

2.2 Metabolism  
 
Metabolism is defined as the total of all chemical reactions that are carried out in an organism. These 

chemical reactions are catalyzed by enzymes and change the structure of one or more chemical 

compounds, also called metabolites. These changes are also called biotransformations. A sequence of 

biotransformations is called a metabolic pathway [3] as illustrated in Figure 2.1.  

 

 
Figure 2.1: A metabolic pathway where multiple biotransformations take place. The substrate of one reaction is the 

product of a previous reaction. 

 
Input metabolites of a metabolic pathway are called substrates and output metabolites are called products. 

Metabolites can originate from ingestion of food, but can also be products of other metabolic pathways. It 

already seems obvious that enzymes, as biological catalysts, have a major influence on the metabolism. 

 

For a metabolic pathway to operate efficiently, its activity must be coordinated and regulated by the cell. 

It seems very unnecessary to synthesize a compound which is already plenty present. 

Regulation of metabolic pathways depends on elegant mechanisms. Figure 2.2(a) shows a metabolic 

pathway catalyzed by three enzymes. This metabolic pathway has no feedback mechanism, but as shown 

in Figure 2.2(b) the end product of this pathway influences the activity of the first enzyme. It binds to an 

allosteric site on the enzyme that catalyzes the first reaction, resulting in the regulation of the enzyme 
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activity. Shutting down the first reaction in the pathway efficiently shuts down the whole pathway. This 

mode of regulation is also called feedback inhibition: 

 

 
Figure 2.2: (a) A biochemical pathway without feedback inhibition. (b) A biochemical pathway in which the end 

product is an allosteric inhibitor of the first enzyme in the pathway. 

 

2.3 Metabolic Engineering  
 
The phenotype of the cell, i.e. its appearance and functioning, is to a large extent determined by its 

metabolism. Manipulating the regulation of metabolic pathways through different components of 

metabolism, such as enzyme and substrate concentrations, gives bioengineers tools to improve the cellular 

properties. Although metabolic engineering is a young field, many laboratories have succeeded in 

reconstructing metabolic pathways in silico.  Individual enzymes, metabolites, their respective 

interactions and reaction mechanisms involved in these pathways have been studied for many years and 

results are stored in different databases, e.g.: 

 

 Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway database 
(http://www.genome.ad.jp.kegg/pathway.html) 

 BRENDA (http://www.brenda-enzymes.info/) 

 

To improve cellular properties or research cellular behavior, researchers make use of genetic engineering 

(gene duplications or deletions) to alter the gene expression levels which influence the metabolism. 

Manipulation of one specific enzyme is also called gene targeting. A major problem is that most enzymes 

participate in multiple pathways, thus a manipulation of an enzymeôs concentration level will have effect 

on multiple pathways, which could result in undesired side effects. To account for these issues, 

researchers have developed a mathematical tool called Metabolic Control Analysis, which puts emphasis 

on the distribution of control over the enzymes in specific pathways. This allows us to infer whether 

targeting a particular gene will influence other pathways. In the supplement, section S3.3, a full 

description of Metabolic Control Analysis is given.  

These interventions and methods allow us to better understand the genotype-phenotype relationship. 

In most cases the engineers make use of a strain, such as Escherichia coli, to modify. Analysis of the 

recombinant strain should be applied to see if the performance improved with respect to the original 

strain. Often, such an analysis will indicate an additional genetic modification is required to further 
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improve performance. Researchers apply analysis and genetic engineering recursively until a desired 

performance level is achieved: 

 

 Analysis: Analyze a pathway and gain knowledge on how it influences the overall cell function 

and the desired property. 

 Design: Find the next target for genetic engineering. 

 Synthesis: Perform genetic modifications to construct the recombinant strain with improved 

properties. 

2.4 Goals 
 
The goals of metabolic engineering are to improve certain cellular activities or to study the behavior of 

the cell after modifications. These goals are rather abstract; below we give some elaborated goals [1-4]. 

 

 Study of behavior: By studying the behavior of the metabolic pathways after genetic 

modifications one could suggest alternatives to known drug targets or reveal the effects and 

causes of diseases and therapies. 

 Heterologous protein production: A specific genetic sequence from one organism is inserted 

into the DNA of another, hence the name heterologous, to create a specific protein. Examples are 

the production of pharmaceutical proteins (hormones, antibodies, etc.) and novel enzymes. An 

example is the product of human insulin by a recombinant E.Coli strain. 

 Improvement of productivity:  In many industrial processes it is important to continuously 

improve productivity. This can be achieved by increasing the biosynthetic pathway activity, e.g. 

by inserting additional gene copies. This will not always work as some metabolic pathways 

involve many enzymes and the increase of activity of one enzyme does not necessarily result in a 

higher productivity. In these cases Metabolic Control Analysis can help. 

 New product construction: It could be interesting to use another host to produce different 

products. This can be achieved by extending existing metabolic pathways by recruiting 

heterologous enzymes. 

 Reduction of by-product formation: In many industrial processes by-products are formed. If 

these are toxic, they may interfere other metabolic pathways or with the purification of the 

product. Metabolic engineering may reduce the concentration of the by-product. 

 Substrate utility:  It could be interesting to extend the number of substrates which the organism 

can utilize in order to more efficiently utilize raw material. Inserting a pathway processing the 

substrate of interest could however lead to (potentially fatal) by-product formation. 
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2.5 The influence of other information on metabolic engineering  
 
Various types of information have had an influence on metabolic engineering and changed the views in 

this field of research [1],[5]: 

 

 Genome sequences: Over the last decades, the full genomes of multiple organisms have been 

sequenced. The availability of the full genome allows metabolic engineers to identify genes 

participating in metabolic pathways together with their regulatory elements. 

 Gene regulation: Methods to measure and infer networks, such as the yeast two-hybrid system, 

allow researchers to predict what the impact of a genetic modification on other genes and on the 

metabolic pathway will be. 

 Control driven modulation:  Control of the reactions rates along a pathway may be distributed 

along the enzymes, as elucidated by Metabolic Control Analysis. This means that when one tries 

to optimize the performance of a metabolic pathway, one has to modify the gene expression 

levels of multiple enzymes.  

 Metabolic network modeling: Many tools have been developed to analyze metabolic networks. 

Although not all kinetic information is currently available, the structure based on its 

stoichiometry can already provide a direction for modulating metabolism. This type of ñnon-

dynamicò model neglects regulation and control information, but it can already be user to make 

predictions by methods such as Flux Balance Analysis (FBA). Figure 2.3 shows the typical 

construction of such an in silico model. 

 Gene expression microarrays: Measuring gene expression with microarrays can give an 

indication what the enzyme levels are at certain time points. A challenge is that the mRNA levels 

measured are not the same as the enzyme levels, due to post-transcriptional and post-translational 

processes. 

 Metabolic concentration levels: Measuring the concentration levels of metabolites can be done 

by Mass Spectrometry, section S2.1 in the supplement has been dedicated to this procedure. We 

ultimately want to know if the alterations have affect on the metabolite concentrations. 

 

 
Figure 2.3: In silico model construction 
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2.6 Limitations and challenges  
 
Recent progress in the field of metabolic engineering has been tremendous. Many different recombinant 

strains have been designed to produce substances needed by industry: pharmaceuticals, fuels, food 

ingredients, etc. We now give some limitations on metabolic engineering: 

 

 Complexity and connectivity: A major problem in metabolic engineering is that the metabolism 

is highly complex and interconnected. We can measure many properties of the metabolic system, 

but we generally do not know what the full mechanism behind its regulation is.  

 Regulation and control: Although there are metabolic models based on bibliomic data, 

estimations and simulations, these still leave out the regulation and control. A challenge for the 

future is to combine metabolic models with gene regulation models to gain insight into the 

mechanism behind pathways, thriving on new and improved measurement techniques. 

 Missing genomic information: A significant challenge is that we may have fully sequenced the 

genome, but still not have assigned all ORFs a function. Even for well-modeled organisms such 

as Saccharomyces cerevisiae and Escherichia coli only 50% of the ORFôs have an assigned 

function [1].  
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Metabolic Networks  
 

3.1 Introduction  
 
With the availability of the genome sequence and its annotation we can attempt to define all metabolic 

enzymes. In addition many metabolic genes and enzymes have been studied, resulting in a collective 

knowledge base, including reactions mechanisms and characterized interactions. Manual component-by-

component reconstruction of genomic and enzymatic data will lead to a structured reconstruction, also 

called a metabolic network. This model can be used to compute allowable network states under governing 

chemical and genetic constraints. 

3.2 Reconstructing the me tabolic network  
 
The first step is to identify genes from the annotation of the genomic sequence, followed by their 

functional assignment using various experimental methods and bioinformatics tools (e.g. BLAST). Once 

we have derived the biological components from the genome sequence, we would like to infer the 

interactions between them. Next we should define the metabolic specificity for all enzymes. Although 

high gene- and protein-sequence homology implies a similar function for gene products, this should be 

experimentally verified. Enzymes can be classified into two groups on the basis of substrate specificity. 

 

1. Structure specificity: Those that function on one or a few highly similar substrates. 

2. Broad specificity: Those that can function on a class of compounds with similar functional 

groups. 

 

Substrate specificity of enzymes can differ between organisms; this is especially the case for coenzymes. 

In addition to primary substrate specificity, enzymes from different organisms preferentially use different 

coenzymes. Since binding sites for coenzymes often share common sequence and structural motifs, 

consensus sequence motifs can be used to identify coenzyme binding sites based of persevered protein 

folds [7]. However, primary literature is the most reliable source of information to determine the 

coenzyme specificity. Next, we need to know the structural formulas of the metabolite, as we need to 

balance the reaction mechanism to satisfy mass and energy conservation laws. This defines the 

stoichiometry of the reaction. 

 

Then, the directionality or reversibility of a reaction needs to be specified. Directionality is a function of 

the thermodynamics of a reaction. To understand the thermodynamics of a biochemical system, section 

S3.1 about thermodynamics is added to the supplement. Not all biochemical reactions are reversible; 

modeling this incorrectly can lead to incorrect predictions and behavior. For most reactions, reversibility 

is specified, but for other reactions calculated thermodynamic properties can be used to determine it. 

Reactions with a highly negative Gibbs free energy, , can be assumed to be irreversible, while those 

with a Gibbs free energy close to zero can be seen as reversible. The Gibbs free energy of a reaction can 

be estimated from the structures of the metabolites using a group contribution method [8]. Care needs to 

be taken as directionality can differ between in vitro and in vivo due to temperature, pH and metabolite 

concentration differences. Figure 3.1 shows the steps involved in defining all metabolic reactions. 
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Figure 3.1: Defining metabolic reactions 

 
After defining the metabolic reactions we can assemble the metabolic network by: 

 

 Analysing traditional biochemical pathways: These pathways are the fueling reactions of the 

organism under study. If they cannot construct the building blocks of life (e.g. glucose), some 

reactions are missing. 

 Filling in missing metabolic activities: Sometimes metabolic reactions can be found in the 

organism under study, but the genome sequence does not support them. This is most likely caused 

by an incomplete annotation of the genome. 

 

Generally, one begins with the assembly of the central metabolism (present in all organisms), and then 

moves on to the biosynthesis of individual macromolecular building blocks (e.g. amino acids or lipids). 

Once all the main metabolic pathways are included, several reactions not included in the traditional 

biochemical pathways, need to be included. The assembled metabolic network can be mathematically 

represented by the stoichiometric matrix, N. This  matrix is defined for the  metabolites and the  

reactions. Each column of the matrix represents a reaction whereas its elements are the stoichiometric 

coefficients: 

 

 

 

If the metabolite is a substrate of the reaction its stoichiometric coefficient is negative, if it is a product it 

is positive. Figure 3.2 shows a set of reactions mathematically represented by the stoichiometric matrix. 

 
Figure 3.2: Stoichiometric representation of a metabolic network. 
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3.3 Dynamic models  

3.3.1 Introduction  
 
Perturbations of a biochemical system, e.g. by gene modulation or drug treatment, can lead to global 

effects that are by no means self-evident. To understand and predict its behavior we can make use of 

systems biology. Systems biology is a biology-based inter-disciplinary study field that focuses on the 

systematic study of complex interactions in biological systems, using a new perspective (integration 

instead of reduction) to study them. We do this by computer simulations, for which a mathematical model 

of the biochemical networks is required. Using only the structure of a metabolic network, we can 

calculate metabolic fluxes (reaction rates in steady state) by pathway- or constrained-based methods, such 

as Flux Balance Analysis (FBA). However, such methods do not explain how rates are actually 

influenced by the activities of enzymes and how they respond to perturbations. Also the stability of the 

system in chemical equilibrium is not described by this model. 

 These questions are answered by dynamic or kinetic models, which employ ordinary differential 

equations (ODE) to describe the temporal behavior of the system in a deterministic way. These models 

give the researchers a tool to understand and estimate the behavior of dynamically closed or open 

systems such as metabolism. To illustrate the ODE approach, an example of the GLUT transporter is 

shown in Figure 3.3. 
 

(A) 

 
(B) 

 

Figure 3.3: (A) The four states of the GLUT transporter. (B) Four-state kinetic diagram of a GLUT transporter. 

The rates of the elementary process illustrated in the kinetic diagram, 3.3(B), are determined by the law of 

mass action. This law states that the rate of a reaction is proportional to the product of the concentrations 

of the molecular species involved in the reaction. We define  as the proportionality constant (rate 

constant) and the forward rate from one state to the other is given by . It is now easy to 

write down the system of ODEs. To do so one must keep track of the change that each elementary process 

makes for each state. Thus the rate of transition of  to  is given by , where  is 

the concentration of the first state.  



13 

 

Writing out the system of ODEs gives: 

 

 

 

 

 

 
Using the package XPPAUT (http://www.math.pitt.edu/~bard/xpp/xpp.html) to solve the system of ODEs 

we constructed Figure 3.4, which shows the temporal behavior of the concentrations. The highest curve to 

the lowest curve is the concentration of  respectively.  

 

 
Figure 3.4: Concentration of the molecular species over time. 

 

Concentrations stop changing after a short time period. This is called chemical equilibrium or steady state 

and indicates that the reaction rates for the production and degradation of the metabolites are equal. The 

system of ODEs can also conveniently be expressed as: 

 

 

 

Where  is the concentration vector, N the stoichiometric matrix,  the reaction rate vector (in this case 

expressed by law of mass action) and  the parameter vector. Steady state would indicate: 

 

 

 

The reaction rate vector  stays constant and in this case also called the flux vector . Due to a large 

variance of enzymatic reactions the reaction rates can also be modeled by different rate laws than the law 

of mass action. This shall be the topic of Chapter 4. 
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3.3.2 Thermodynamics and chemical equilibrium  
 
We can describe a chemical reaction as a function of the thermodynamic driving force, ultimately 

resulting in chemical equilibrium [10-11]. The occurrence of a reaction is also named a natural process or 

spontaneous change. Spontaneous change is that which, once initiated, proceeds on its own until some 

state of equilibrium is attained. One could think of a ball being rolled up a mountain, containing potential 

energy, and once released this potential energy is converted to kinetic energy ultimately let the ball roll 

until it halts (the equilibrium state). To further understand this we first introduce some important 

properties of chemical systems. 

 

Thermal energy or kinetic energy has the tendency to disperse as widely as possible and this is what 

drives all spontaneous processes. To understand how the direction and extent of the spreading and sharing 

of thermal energy is related to measurable properties of substances we introduce the entropy: 

 

Entropy is a measure of the degree of spreading and sharing of thermal energy 

within a system. This is also called the disorder of the system. 

 

As a substance becomes more dispersed in space, the thermal energy is also spread over a larger volume, 

leading to an increase in entropy. Although this holds for ideal gases and cannot be used for all solids or 

liquids, it turns out that in a dilute solution, the solute can often be treated as a gas dispersed in the 

volume of the solution. This led to the following definition of the change of entropy as reflected by a 

change of concentration of  to . 

 

 

We define the change of entropy in terms of another quantity namely heat, , under the assumption that 

the temperature stays constant.  For a process that exchanges a quantity of heat  with the 

surroundings, the entropy change is defined as. 

 

 

 

Because all natural processes lead to the spreading and sharing of thermal energy and because entropy is a 

measure of the extent to which energy is dispersed in the world, it follows that 

 

In any spontaneous macroscopic change, such as chemical reactions, the entropy of the world 

increases 

 

This is known as the second law of thermodynamics. The most important entropy in the definition of 

thermodynamics is not the entropy of the system or surroundings, but the total entropy, called the entropy 

of the world.  

 

 

 

The only way the entropy of the surrounding changes is through exchange of heat with the 

system: 
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The most fundamental property of a chemical system is its Gibbs free energy. It takes energy to break the 

chemical bonds that hold the atoms in a molecule together. Thermal energy, because it increases atomic 

motion (increase in disorder), makes it easier for the atoms to be pulled apart. Both chemical bonding and 

heat have a significant influence on a molecule; the former reducing disorder, the latter increasing it. The 

net effect, the amount of energy actually available to break and subsequently form other chemical bonds, 

is called the free energy of that molecule. More generally, free energy is defined as the energy available to 

do work in any system. For a molecule within a cell, where pressure and volume usually do not change, 

the free energy is denoted as . The free energy is defined by the energy contained in the chemical bonds, 

enthalpy , and the disorder and temperature in degrees Kelvin (3.7). 

 

 

 

Chemical reactions break some bonds in the reactants and form new bonds in the products. Consequently, 

reactions can produce changes in free energy (3.8). 

 

 

 

This change in free energy is a fundamental property of chemical reactions. In some reactions, the change 

of free energy is positive, indicating that the products of a reaction contain more free energy than its 

reactants. These so called endergonic reactions do not occur spontaneously as they require an input of 

energy. Any chemical reaction tends to occur spontaneously if the difference in disorder between the 

reactants and products is greater than the difference in bond energies. Using (3.5-3.6) we can derive (3.9). 

To perform the chemical reaction the heat is drawn from the surrounding: 

 

 

 

This can be written as the change of enthalpy: 

 

 

 

Multiplying both sides by -T results in: 

 

 

 

and substituting  gives (3.8). 

 

In order to make use of free energies to predict the direction of the spontaneous reactions, we need to 

know the free energies of the individual components of a reaction. For this purpose we can combine the 

standard enthalpy of formation and the standard entropy of a substance to get its standard free energy of 

formation. 

 

 

 
and then determine the standard Gibbs free energy of the reaction according to 
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The symbol  indicates that a quantity is measured under the standard conditions of 1 mole substance and 

(usually) a temperature of 298 K. For a reaction , one of the following three situations will always 

apply: 

 

ȹG° < 0  Forward reaction can spontaneously proceed:   A Ÿ B  

ȹG° > 0  Reverse reaction can spontaneously proceed:    A Ŷ B  

ȹG° = 0  
the reaction is at equilibrium; the quantities of A and B will not 

change 

 

The free energy of a substance depends on its concentration. A higher concentration leads to more free 

energy, thus the conversion of a molecule is accompanied by a fall in free energy. We express the change 

in free energy when a substance undergoes a change of concentration of  to  as: 

 

 

 

How can we evaluate the free energy of a specific sample at some arbitrary concentration? First, recall 

that the standard molar free energy G° is calculated with respect to a concentration of 1 mole. The free 

energy per mole of our sample is just the sum of this value and any change in free energy that would 

occur if the concentration were changed from 1 mole to the concentration of interest, C: 

 

 
 

Under conditions of constant temperature and pressure, chemical change will tend to occur in whatever 

direction leads to a decrease in the value of the Gibbs free energy. When G falls as far as it can, all net 

change comes to a stop. Let us assume that we have a reaction where substrates A and B are converted to 

the products C and D, the free energy of substance as: 

 

 

 

The free energy change for the reaction is given by: 

 

 

 

Using equation (3.14) we expand (3.15): 

 

  

 

As a chemical reaction takes place, G will only decrease. Eventually a point is reached where any further 

transformation of reactants into products would cause G to increase. As the reaction approaches 

equilibrium,  becomes finally reaches zero. At equilibrium we findQ=constant, also called the 

equilibrium constant: 
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This equation is one of the most important in chemistry as it relates the equilibrium constant to 

measurable properties of the reactants and products. It is often useful to solve (3.19) for : 

 

 

 

In kinetics the equilibrium constant is also the ratio of the rate constants of the reactants, for example: 

 

 

 

A large number of parameter estimation methods try estimating these rate constants. A drawback is that 

the ratio of the rate constants can change during the estimation, as the relation between the rate constants 

and the equilibrium constant has not been taken into account, but the equilibrium constant remains 

constant as the enthalpies and entropies do not change. This implies that one would get an estimated 

equilibrium constant that is not equal the true equilibrium constant due to thermodynamics, therefore 

violating the laws of thermodynamics, resulting in a dynamic model that does not occur in reality. These 

relations pose thermodynamic constraints on the model parameters.  

There is an additional thermodynamic constraint called the Wegscheider condition. Section 3.1 

was added to the supplement to fully discuss this phenomenon. 
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3.4 Goals 
 
The goals of the metabolic network and its dynamical model, taken from [1-2] and [16-17], are:  

 

 Interpretation and evaluation of measured data: It would be interesting to build a dynamic 

model that is able to reproduce experimental data and study the behavior of the modeled system.  

 Analysis of properties: Analysis of the model can help to better understand the behavior of the 

system. A downside of these methods is that they need a very accurate model, where in practice 

most parameters of the model are unknown or corrupted by measurement noise. Also stability 

analysis can be used to analyze properties. Section 3.2 was added to the supplement to fully 

explain this type of analysis. 

 Simulation: The simulation of the dynamic model could give insight into the behavior of the 

system and give explanatory information about its dynamics. 

 Optimisation: When a metabolic network is defined one can use it to improve the design of a 

strain such as to have better performances. 

 Prediction: A major goal of the metabolic networks is to build a validated metabolic network 

that could predict the outcome of experimentations, such that most calculation can be done in 

silico. 

 

These goals can be divided into two complementing classes: 

 

Gain knowledge system: We would like to gain knowledge about the system. With informative analysis 

we can understand and predict the complex behavior of the system. Some examples of knowledge we 

could gain are: parameter sensitivity or flux direction. 

Control the system: We would like to reconstruct the system as accurately as possible to control system. 

In this case we do not desire to gain any knowledge of the system, but would like that the model 

reproduces the measurements as accurately as possible. 

3.5 Limitations  
 

Although the modeling of metabolic networks has been frequently applied, it still is limited: 

 

 Unknown model parameters: Much time has been spent on the determination of model 

parameters in a metabolic network. Most known parameters are stored in databases, but not all 

parameters are known. This is a limiting factor as we try to model the in vivo system as complete 

as possible. 

 Uncertain model parameters: A major obstacle is that model parameters are corrupted by noise.  

 Different conditions: Some parameters are estimated in experimental configurations different 

from the one that you are trying to model. Due to biological variability this can lead to inaccurate 

modeling and leads to inaccurate information and simulations. 

 Missing reactions: Most of the reactions that play part in our metabolism have been studied and 

its results stored in databases, but not for all. To account for these issues one could make use of 

metabolic network alignment in different species to find missing reactions [18]. 

 Complexity: Metabolism is highly complex and hard to model, due to different levels of 

regulation and high connectivity. Integrating the different levels of regulation has to this day not 

been fully accomplished, resulting in a simplified model. 
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Rate Laws 

4.1 Introduction  
 
Once the structure of a metabolic network is known it can be translated into a dynamic model, requiring 

rate laws for all enzymatic reactions. The rate law for a chemical reaction is an equation that links the 

reaction rate to concentrations of reactants, pressure, temperature and the rate constants. Let us assume 

that we have the following reaction: 

 

 
 

We can make use of the law of mass action to specify the rate equation in terms of the reactants. 

 

 

 

Where the function  is the rate constant, which should be better dubbed reaction rate coefficient as it 

depends on the temperature, as seen in the Arrhenius equation: 

 

 
 

where  is the reaction rate coefficient,  the pre-factor or frequency factor,  the activation energy,  

the universal gas constant and  the temperature in Kelvin. The activation energy is the energy that must 

be overcome so that the reaction occurs. With the addition of a catalyst, such as an enzyme, this energy 

barrier is much lower as shown in Figure 4.1 and results in a higher reaction rate coefficient. 

 

 
Figure 4.1: Energy barrier for the reaction where the substrate S is converted to the product P. 

 

The rate equation of rate laws is dependent on the underlying enzyme mechanism. With different enzyme 

mechanisms, one should use different rate laws. A problem is that these rate equations can become quite 

involved and may contain a large number of parameters, for example: reaction rate coefficients and 

enzyme concentrations. For most enzymes the enzyme parameters are unknown, which will be a topic of 

discussion in the next chapter.  

Enzyme assays are laboratory procedures that measure the rate of enzymatic reactions. Because 

enzymes are not consumed by the reactions they catalyse, enzyme assays usually follow changes in the 

concentration of either substrates or products to measure the rate of reaction. The most well-known assay 

is the initial rate experiments where the initial rate of a reaction is determined. This is done by looking at 

the concentration of the product over time as shown in Figure 4.2. This curve has approximately a straight 
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line in the beginning, called the initial rate period, from which we can calculate the slope. This slope is 

also called the initial reaction rate used frequently in metabolic modeling. 

 

 
Figure 4.2: Accumulation of the product over time 

 

The law of mass action is defined for single-step reactions and its initial reaction rate can be 

approximated by the substrate concentrations and reaction rate coefficient as seen in (4.1). 

 Its assumptions are also a downside for getting the analytic rate equation. Most of the reactions in 

metabolism are not performed by a single conversion step and the rate equation does not model the 

saturable enzyme phenomenon.  

4.2 Irreversible Michaelis -Menten rate law  
 
A well-known rate law postulated in this section is the irreversible Michaelis-Menten rate law. Let us first 

introduce the enzymatic mechanism for this rate law: 

 

 
 

Where  is the enzyme, the substrate,  the enzyme-substrate complex and  the product.  

The algebra needed to deal with a four-reaction system is very complex. To avoid this, Michaelis and 

Menten assumed that the enzyme is irreversible, but this is frequently incorrect. Instead Briggs and 

Haldane (1926, UK) limited their derivation to dealing with initial rates of reaction, when no product has 

formed yet, . In this case the rate of binding of product, , is zero, and can be safely ignored. 

The system of ODEs for this reaction scheme is given by: 
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Figure 4.3: Simulation of system of ODEôs. Vertical axis is concentration [mM] and the  

horizontal axis time [s]. (Red) ï Substrate, (White) ï Enzyme, (Yellow) ï Product 

(Orange) ï Enzyme-Substrate complex. 

 

Figure 4.3 illustrates the temporal behavior of the system of ODEs (S(0)=0.5, E(0) = 0.5) and shows that 

the product trajectory behaves as illustrated in Figure 4.2.  The basic principle of the Briggs-Haldane 

theory is based on the observation that the reaction rate rapidly attains a fixed rate, implying that the 

concentration [ES] is in Quasi Steady-state. We can state that the initial reaction rate  is then entirely 

described by reaction step 2, since all P formed must have passed just once through step 2. This implies: 

 

 

 

We run into a problem, as at the beginning of the experiment we only know the initial substrate 

concentration  and the total enzyme concentration . The concentration of the enzyme-substrate is 

normally not measurable, thus we need to make assumptions such that we can define the reaction rate 

equation by these two available concentrations. Another fact that led to the derivation of the Michaelis-

Menten rate law is that when one increases the concentration of the substrate that at a certain point the 

initial reaction rate does not increase. This fact is shown in Figure 4.4, where slope in the initial period of 

the product concentration curves does not increase with an increase of substrate at a certain point.  

 

 
Figure 4.4: Product accumulation trajectories over time corresponding to different substrate concentrations. The 

substrate concentrations used are: 0.5 mM, 1mM, 5 mM, 10 mM, 15 mM and 20 mM. 
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This natural phenomenon is called enzyme saturation and happens frequently in reality. For a given 

enzyme concentration and for relatively low substrate concentrations, the reaction rate increases linearly 

with substrate concentration; the enzyme molecules are largely free to catalyze the reaction, and 

increasing substrate concentration indicates an increasing rate. However, at relatively high substrate 

concentrations, the reaction rate asymptotically approaches the theoretical maximum; the enzyme active 

sites are almost all occupied and the reaction rate is determined by the intrinsic turnover rate of the 

enzyme.  

 

The concentration of the enzyme-substrate complex changes much slower than that of the product and 

substrate, hence changes on a different time scale. For the rate equation we use the most comprehensible 

derivation made by Higgs and Haldane. The complete derivation can be found in the supplement section 

S4.1. Under the Quasi-Steady state assumption we define: 

 

 

 

Which we rewrite to: 

 

 

 

Where the constant  is the Michaelis-Menten constant, which shall be discussed later in this section. 

Using conservation laws (supplement) we can rewrite (4.5): 

 

 

Substituting this expression in (4.3). 

 

 

 

Giving the rate equation for the Michaelis-Menten reaction scheme. First of all the rate equation is 

dependent on the initial concentration of the substrate and the total enzyme concentration, which are 

known at the beginning of the experiment. Figure 26 illustrated that if one would increase the substrate 

concentration it would lead to an asymptotic limited initial reaction rate due to enzyme saturation. This 

phenomenon is also modeled by this rate equation as shown in Figure 4.5. The initial reaction rate is 

bounded to the product of the reaction rate coefficient of step two times the total enzyme concentration as 

the ratio in (4.7) goes to unity when . Such high substrate concentrations is rare, a more 

appropriate measure to characterize an enzyme is the substrate concentration at which the initial reaction 

rate reaches half of its maximum value ( ) (4.8). This is the case were the substrate concentration is 

equal to the Michaelis-Menten constant defined by (S4.4).  
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Figure 4.5: Initial reaction rate as a function of substrate concentration. 

 
The Michaelis-Menten rate equation has also some limitations. First of it is assumed that the rate of 

change of the enzyme-substrate complex is equal to zero, but this is not always the case. The quality of 

the Michaelis-Menten approximation depends on the timescale separation present in the dynamics, which 

controls the magnitude of the rate of change of . Another limitation is that the Michaelis-Menten 

kinetics relies on the laws of mass action, which, in turn, is derived from the assumptions of free diffusion 

and thermodynamically-driven random collision. This is not always the case as the cytoplasm of a cell is 

more gel-like liquid due to the protein concentrations resulting in a non-free diffusion and non-random 

collisions. 

4.3 Reversible Michaelis -Menten rate law  
 
The reversible Michaelis-Menten is another rate law is commonly used in dynamic models and extends 

the irreversible Michaelis-Menten rate law. Let us first introduce the reaction scheme. 

 

 
 

From this reaction scheme we can deduce that there is an extra step, namely the conversion of the 

enzyme-substrate complex to the enzyme-product complex. We can also see that all the reactions are now 

reversible. From this reaction scheme we can construct the system of ODEs: 
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To derive the rate equation for this rate law we must make a simplifying assumption. 

 

Equilibrium assumption: The dissociation of the enzyme-substrate complex and the enzyme-product 

complex is much faster than the interconversion between the enzyme-substrate complex and the enzyme-

product complex. 

 

This implies that  and . Therefore the first step and the third step are near equilibrium, 

implying that the equilibrium constants or the reciprocal of them, named the dissociation constants, are 

near there steady-state value. The dissociation constants of the first and the last step are: 

 

 

 

 

The full derivation of the rate equation can be found in the supplement section S4.2. Rewriting (4.9), 

(4.10). 

 

 

 

 

The rate equation for the reversible Michaelis-Menten reaction scheme is: 

 

 

 

Equation (4.13) introduces two new constants, namely the forward rate  and the backward rate. 

These are defined as the maximum rate that can be acquired by the forward rate and backward rate just as 

the definition of  in the reversible Michaelis-Menten rate law. This can be seen by setting for 

instance the concentration of the product to zero which will reduce the equation to: 
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In this context the dissociation constant behaves almost the same as the Michaelis-Menten constant and 

can be shown by: 

 

 

 

But we made the assumption that   such that the constant  can be neglected: 

 

 

 

For this rate law the same rules apply for the irreversible Michaelis-Menten kinetics, such as enzyme 

saturation. Although the reversible Michaelis-Menten kinetics is a better approximation of the behavior of 

enzymatic reaction rates it still has its limitations. The first limitation is that it does not model the 

cooperative kinetics between enzymes. A second major limitation is that it fails to explain the allosteric 

regulation of enzymes (e.g. feedback inhibition).  

4.5 Convenience kinetics  

4.5.1 Introduction  
 
Dynamic modeling of metabolic networks requires information about the enzymatic reactions. To capture 

these enzymatic mechanisms all the reactions in an enzymatic climate are described by different rate laws, 

such as the laws of mass action and linlog kinetics [28]. One of the fundamental disadvantages of these 

rate laws is that they fail to describe the enzyme saturation phenomenon and could be better modeled by 

irreversible and reversible Michaelis-Menten rate laws. Other rate laws have been derived from specific 

enzymatic mechanisms, but generally have a complicated mathematical expression and have to be 

established separately for each reaction stoichiometry. One of the major disadvantages of metabolic 

networks is that they are dependent on a large number of enzymatic parameters (e.g. equilibrium 

constants, Michaelis-Menten constants and reaction rate coefficients). To model allosteric regulation one 

has to gather an additional parameter. 

 

Modifier constant:  In metabolism some reaction rates are modified by inhibitors or activators. These 

modifiers bind to the allosteric site of the enzyme and influence its activity; its effect is quantified by 

modifier constants. 

 

Although we have information about a large number of parameters, using them is not so straightforward. 

The metabolic networks are handicapped by uncertain or unknown parameters (see chapter 3), but are 

also constrained by thermodynamic constraints (supplement S3.1). 

 

Thermodynamic constraints: Parameters are constrained by the thermodynamics of the system. If one 

would construct a model which violates the laws of thermodynamics it is likely not to model the in vivo 

system and produce inaccurate results or behaves differently. 

 

If one would develop methods that estimate the enzyme model parameters, like parameter fitting or 

optimization, it is likely that the estimated parameters violate the thermodynamic constraints (as it is not 

taken into account).  
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4.5.2 Convenience kinetics  
 
To take thermodynamic constraints into account Liebermeister, et al. [29] developed a rate law called 

convenience kinetics, based on thermodynamically independent parameters, which is a direct 

generalization of the reversible Michaelis-Menten rate law. One of the advantages is that it can describe 

all possible stoichiometries and enzyme regulation by modifiers. First we should state the assumptions of 

this rate law: 

 

 Random order: The substrates bind to the enzyme in an arbitrary order and are converted in 

products, which dissociate from the enzyme in an arbitrary order. 

 Rapid-equilibrium: The binding of substrates and products is reversible and much faster than 

the conversion step. This is the same as in reversible Michaelis-Menten. 

 Reversibility: All reactions in the reaction scheme are assumed to be reversible. 

 Binding energy: The binding energy of individual reactants does not depend on reactants already 

bound to the enzyme. 

 

For the last assumption we should explain the term ñbinding energyò. The interaction between the 

substrate and the enzyme hold the substrate in the proper orientation for the most effective catalysis. The 

energy derived from this interaction is called the binding energy and used to lower the activation energy 

barrier, and stabilize the transition state from the enzyme-substrate complex to the enzyme-product 

complex. This binding energy can be calculated using standard Gibbs free energy. We shall derive the 

convenience rate equation from a bimolecular reaction without enzyme regulation. Under the assumptions 

made the reaction scheme would look like Figure 4.6. 

 

 
 

 

 

 
Figure 4.6: Reaction mechanism of a bimolecular reaction under convenience kinetics. 

 
The dissociation constant  

 

 

 

describes the balance of bound and unbound  in chemical equilibrium and is the reciprocal of the 

equilibrium constant. We have also seen from (3.17-3.18) that the equilibrium constant can be expressed 

by standard Gibbs free energies automatically implying that the dissociation constant can also be 

expressed in standard Gibbs free energies (4.16). 

 

 




