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Introduction

Metabolism is a vital cellular process and its malfunction is a major contributor to human disease. For this
reason, it is important to construct and investigate metabolic networks. We can safely say that such
metabolic networks are complex and highly interconnected, therefore degstlnsomputational
approaches are required to understand metabolic gerglygmmtype relationships. One of the major
fields of research in systems biology is the reconstructidinese metabolic networks-Pl]. The
reconstructed network can be used to suggest potential alternatives to known drug targets or could reveal
the effects and causes of diseases and therapies.

To understand the complé&ehavior of the systeme need to translate the metabolic network
into a dynamical model with rate laws for each enzymatic readileese rate laws are defined as
mathematical expressions which heavily depend on the underlying nwohafrthe enzymatic reactions
andcan becona quite complex witla large quantity of parameteiithere are two main reasons to use
dynamical models: (e wish to gain more knowledge about the systerwé)vant to control the
system. To model the system as accurately as passibleish to havecomplete and accurate set of
parameters which characterize the system. This definition is by the fact that some parameters are: (1)
corrupted by measurement noise (2) influenced by biological variability (3) completely uniiiown.
these factors of unceaitity and missing knowledge lead to problems in the dynamic modeling of
metabolic networks.

To account for these issues we could perform model parameter estimation, also called system
identification. With the use of measurement data and the model seruatican estimate the parameters
as accurately as possible, whentually leadto a dynamic model that can make accurate predictions
and would be a gain for fundamental research in various fields.

This document gives an overview of the state of thenahe field of system identification in metabolic
engineeringFirst the reader will be introduced to the concept of metabolic engineering after which the
reader will be further instructed about its goals, procedures and limitations.

Next the reader iV be introduced to the field of metabolic networks and dynamic modeling. The
reader will be instructed about its goals, procedures and theoretical methods to extract quantitative and
gualitative information.

To translate the metabolic netwdrko a dynamic model one has to dedi rate laws for each
reaction and iexplained in Chapter 4. The most wetlown and topically important rate laws will be
explained in full detail. Not only shall we derive the mathematical expressions for these ratritawes
will also spend effort on the epiphany of the method in terms of assumptions and underlying biological
ideas.The reader will not only sebe mathematical derivation, but can also see the types of reaction
mechanisms we are trying to model.

Although rmuch information of the metabolic model and its dynamics has been gathered over
time, they are still handicapped by uncertain model parameters. As already exphainglinitations
can lead to inaccurate model predications with respect to the obsen®&deneants. To account for
these issues we introduce in Chapter 5 different ndsttmestimate model parameters

Chapter 6 discussthe limitations of the described methotisgether with the open problems
and directions of future work. Next we proposetmbine some complementing methods to form a
synergy. Finally a discussion and conclusion will be given.

M.A. Sanders



Metabolic Engineering
2.1 Introduction

The fundamental goal of the methods discussed later is to accurately model metabolist sueltan
understand its behavior and improve it by engineering. Here we define metabolic engineering, its goals
and applications. There are external influences on metabolism that are not directly obvious and shall be
addressed in this chapter. Furthermtbiere are currently some limitations and challenges in metabolic
engineering that we are trying to overcome or resolvené\heart ofnetabolic engineering lies the
measurement of parameters to reconstruct the dynamic behavior of the metabolic model.

2.2 Metabolism

Metabolism is defined as the total of all chemical reactions that are carried out in an organism. These
chemical reactions are catalyzed by enzymes and change the structure of one or more chemical
compounds, also called metabolites. Thdsmnges are also called biotransformations. A sequence of
biotransformations is called a metabolic pathwayaf8]llustrated in Figure 2.1

7 SO

Enzyme 1 S \/
s X/
RN

J
J

\
Enzyme 2 = C\/)
7 \

Enzyme 3

Enzyme 4

Figure2.1: A metabolic pathway where multiple biotransformations take place. The substrate of one retiwtion is
product of a previous reaction.

Input metabolites of a metabolic pathway are cadidastratesand output metabolites are call@ducts
Metabolites can originate from ingestion of food, but can also be products of other metabolic pathways. It
alrealy seems obvious that enzymes, as biological catalysts, have a major influence on the metabolism.

For a metabolic pathway to operate efficiently, its activity must be coordinated and regulated by the cell.
It seems very unnecessary to synthesize a conspebithis already plenty present.
Regulation of metabolic pathways depends on elegant mechanisms. FAjayesl2ows a metabolic

pathway catalyzed by three enzymes. This metabolic pathway has no feedback mechanism, but as shown

in Figure 22(b) the end mduct of this pathway influences the activity of the first enzyme. It binds to an
allosteric site on the enzyme that catalyzes the first reaction, resulting in the regulation of the enzyme



activity. Shutting down the first reaction in the pathway effittieshuts down the whole pathway. This
mode of regulation is also called feedback inhibition
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Figure 2.2: (a) A biochemical pathway without feedback inhibition. (b) A biochemical pathway in which the end

product is an allosteric inhibitor of the firstzyme in the pathway.

2.3 Metabolic Engineering

The phenotype of the cell, i.e. its appearance and functioning, is to a large extent determined by its
metabolism. Manipulating the regulation of metabolic pathways through different components of
metabolisn, such as enzyme and substrate concentrations, gives bioengineers tools to improve the cellular
properties. Although metabolic engineering is a young field, many laboratories have succeeded in
reconstructing metabolic pathwaiyssilico. Individual enzymas, metabolites, their respective
interactions and reaction mechanisms involved in these pathways have beerfstudany years and
results arestored in different databases, e.g.:

e Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway database

(http://www.genome.ad.jp.kegg/pathway.html)
e BRENDA (http://www.brendeenzymes.info/)

To improve cellular properties or research cellular behargsearchers make use of genetic engineering

(gene duplications or deletions) to alter the gene expreksiels which influencéhe metabolism.

Manipulation of one specific enzyme is also calietie targetingA major problem is that most enzymes
participate in multiplgpathways, thua

mani pul ati on of

an

enzymeos

on multple pathways, which could result in undesired side eff@ctsiccount for these issyes
researchers have developed a mathematical tool dd#e&abolic Control Analysiswvhich puts emphasis
on thedistribution of control over the enzymes in specific patysv This allows uto infer whether
targeting a particular gene will influence other pathwayshe supplement, section S3.3, a full
description of Metabolic Control Analysis is given.

These interventions and methods allow us to better understanernbigygephenotype relationship.
In most cases the engineers make use of a strain, sisiclzerichia colito modify. Analysis of the

recombinant strain should be applied to see if the performance improved with respect to the original

strain. Often, suchn analysis will indicate an additional genetiodification isrequired to further

conc



improve performance. Researchers apply analysis and genetic engineering recursively until a desired
performance level is achieved:

Analysis: Analyze a pathway and gainowledgeon how it influences the overall cell function
and the desired property.

Design Find the next target for genetic engineering.

Synthesis Perform genetic modifications to construct the recombinant strain with improved
properties.

2.4 Goals

The goals of metabolic engineering are to improve certain cellular activities or to study the behavior of
the cell after modifications. These goals are rather abstract; below wsogiecelaborated godlis-4].

Study of behavior: By studying the behavior ohé metabolic pathways after genetic
modifications one could suggest alternatives to known drug targets or reveal the effects and
causes of diseases and therapies.

Heterologous protein production: A specific genetic sequence from one organism is inserted
into the DNA of another, hence the name heterologous, to create a specific protein. Examples are
the production of pharmaceutical proteins (hormones, antibodies, etc.) and novel enzymes. An
example is the product of human insulin by a recombiBaDoli stran.

Improvement of productivity: In many industrial processes it is important to continuously
improve productivity. This can be achieved by increasing the biosynthetic pathway activity, e.g.
by inserting additional gene copies. This will not always workomse metabolic pathways

involve many enzymes and the increase of activity of one enzyme does not necessarily result in a
higher productivity. In these cases Metabolic Control Analysis can help.

New product construction: It could be interesting to use ahet host to produce different
products. This can be achieved by extending existing metabolic pathways by recruiting
heterologous enzymes.

Reduction of by-product formation: In many industrial processes-pyoducts are formed. If

these are toxic, they manterfere other metabolic pathways or with the purification of the
product. Metabolic engineering may reduce the concentration of theodyct.

Substrate utility: It could be interesting to extend the number of substrates which the organism
can utilize inorder to more efficiently utilize raw material. Inserting a pathway processing the
substrate of interest could however lead to (potentially fataprbgiuct formation.



2.5 The influence of other information on metabolic engineering

Various types of iformation have had an influence on metabolic engineering and changed the views in
this field of research [1],[5

e Genome sequencever the last decades, the full genomes of multiple organisms have been
sequenced. The availability of the full genoallews metabolic engineers to identify genes
participating in metabolic pathways together with their regulatory elements.

¢ Gene regulation:Methods to measure and infer networks, such as the yeahbytwid system,
allow researchers to predict what the aopof a genetic modification on other genes and on the
metabolic pathway will be.

e Control driven modulation: Control of the reactions rates along a pathway may be distributed
along the enzymes, as elucidated by Metabolic Control Analysis. This meawhémabne tries
to optimize the performance of a metabolic pathway, one has to modify the gene expression
levels of multiple enzymes.

¢ Metabolic network modeling: Many tools have been developed to analyze metabolic networks.
Although not all kinetic informigon is currently available, the structure based on its
stoichiometry can already provide a ddrection
dynami co model neglects regulation and control
predictions bymethods such as Flux Balance Analysis (FBA). FiguBsshows the typical
constructiorof such arin silico model.

e Gene expression microarraysMeasuring gene expression with microarrays can give an
indication what the enzyme levels are at certain tinietpoA challenge is that the mRNA levels
measured are not the same as the enzyme Jelelto postranscriptional and pogtanslational
processes.

e Metabolic concentration levels:Measuring the concentration levels of metabolites can be done
by Mass Spctrometry, section S2.1 in the supplement has been dedicated to this procedure. We
ultimately want to know if the alterations have affect on the metabolite concentrations.
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2.6 Limitations and challenges

Recent progress in the field of metabolic engineering has been tremendous. Many different recombinant
strains have been designed to produce substances needed by industry: pharmaceuticals, fuels, food
ingredients, etdVe now give some limitationnametabbc engineering:

e Complexity and connectivity: A major problem in metabolic engineering is that the metabolism
is highly complex and interconnected. We can measure many properties of the metabolic system,
but we generally do not know what the full mechanixehind its regulation is.

¢ Regulation and control: Although there are metabolic models based on bibliomic data,
estimations and simulations, these still leave out the regulation and control. A challenge for the
future is to combine metabolic models wifbne regulation models to gain insight into the
mechanism behind pathways, thriving on new and improved measurement techniques.

e Missing genomic information: A significant challenge is that we may have fully sequenced the
genome, but still not have assigredldlORFs &unction. Even for wétmodeled organisms such
asSaccharomyces cerevisiandEscherichiacolonl v 50% of the ORF&s have
function [1].



Metabolic Networks

3.1 Introduction

With the availability of the genome sequence andntsotation we can attempt to define all metabolic
enzymes. In addition many metabolic genes and enzymes have been studied, resulting in a collective
knowledge base, including reactions mechanisms and characterized interactions. Manual cedmgponent
componehreconstruction of genomic and enzymatic data will lead to a structured reconstruction, also
called a metabolic network. This model can be used to compute allowable network states under governing
chemical and genetic constraints.

3.2 Reconstructing the me tabolic network

The first step is to identify genes from the annotation of the genomic sequence, followed by their
functional assignment using various experimental methods and bioinformatics tools (e.g. BLAST). Once
we have derived the biological compotwefirom the genome sequence, we would like to infer the
interactions between them. Next we should define the metabolic specificity for all enzymes. Although
high geneand proteirsequence homology implies a similar function for gene products, this dimuld
experimentally verified. Enzymes can be classified into two groups on the basis of substrate specificity.

1. Structure specificity: Those that function on one or a few highly similar substrates.
2. Broad specificity: Those that can function on a classompounds with similar functional
groups.

Substrate specificity of enzymes can differ betwaganismsthis is especially the case for coenzymes.

In addition to primary substrate specificity, enzymes from different organisms preferentially use different
coenzymes. Since binding sites for coenzymes often share common sequence and structural motifs,
consensus sequence motifs can be used to identify coenzyme binding sites based of persevered protein
folds [7]. However, primary literature is the most rel@abburce of information to determine the

coenzyme specificity. Next, we need to know the structural formulas of the metabolite, as we need to
balance the reaction mechanism to satisfy mass and energy conservation laws. This defines the
stoichiometry of the@eaction.

Then, the directionality or reversibility of a reaction needs to be specified. Directionality is a function of
the thermodynamics of a reaction. To understand the thermodynamics of a biochemical system, section
S3.1 about thermodynamics is adde the supplement. Not all biochemical reactions are reversible;
modeling this incorrectly can lead to incorrect predictions and behavior. For most reactions, reversibility
is specified, but for other reactions calculated thermodynamic properties uaaedo® determine it.

Reactions with a highly negative Gibbs free enefdy, can be assumed to be irreversible, while those

with a Gibbs free energy close to zero can be seen as reversible. The Gibbs free energy of a reaction can
be estimated from thergttures of the metabolites using a group contribution method [8]. Care needs to

be taken as directionality can differ betweewitro andin vivodue to temperature, pH and metabolite
concentration differences. FiguBel shows the steps involved in dafig all metabolic reactions.
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Level 1: Metabolite specificity
Primary metabolites Coenzymes

[MC | [Py ] | NAD | INADH]

Level 2: Metabolite formulae
Neutral formulae
| C.H,0, l I C,H.O, | |CquaN.‘OuPz

|CquerOup;|

Charged formulae
[EHor] [EHO ] [CaHuNOLPr | [CuHaN0.Px]

Level 3: Stoichiometry
1LAC + 1NAD ? 1PYR+1NADH +1H

Level 4: Thermodynamic considerations and/or directionality
1LAC+1NAD <> 1PYR+1NADH +1H

Figure 3.1: Defining metabolic reactions

Stap-wise incorporation of information

After defining the metabolic reactions we can assemble the metabolic network by:

¢ Analysing traditional biochemical pathways:These pathways are the fueling reactions of the
organisn under study. If they cannot construct the building blocks of life (e.g. glucose), some
reactions are missing.

¢ Filling in missing metabolic activities: Sometimes metabolic reactions can be found in the
organism under study, but the genome sequence dbsspport them. This is most likely caused
by an incomplete annotation of the genome.

Generally, one begins with the assembly of the central metabolism (present in all organisms), and then
moves on to the biosynthesis of individual macromolecular buildimgks (e.g. amino acids or lipids).

Once all the main metabolic pathways are included, several reactions not included in the traditional
biochemical pathways, need to be included. The assembled metabolic network can be mathematically
represented by theaschiometric matrixN. Thisi x I matrix is defined for thé metabolites and the
reactions. Each column of the matrix represents a reaction whereas its elements are the stoichiometric
coefficients:

Ny} = { Stoichiometric coef ficient If it participates in the reaction
=10 Ifitdoesn't participate in the reaction

If the meabolite is a substrate of the reaction its stoichiometric coefficient is negative, if it is a product it
is positive. Figure 3.2 shows a set of reactions mathematically represented by the stoichiometric matrix.

Abbreviation  Glycolytic reactions Genes

HEX1 [c]JGLC + ATP — G6P +ADP+ H glk

PGI [c]G6P == F&P pgt

PFK [c]ATP + F6P—> ADFP +FDP +H kA, pfkB

FBA [c]FDP <> DHAP + G3P foaA. fbaB

TPI [c]DHAP = G3P ptA

GAPD [€]G3P + NAD + Pl == 13DPG+H +NADH  gapA.gapC1.gapC2
PCGK [c]13DPG + ADP <> 3PG + ATP pgk

PGM [€]3PG <> 2PG gpmA. gpmB

ENO [€]2PG <= H,O + PEP eno

PYK [cJADP + H+ PEP — ATP + PYR PrkA. pykF

ATP =X o o o o o 1 o o 1
GLC =l o o o o o o o o o
ADP 1 o 1 o o o =7 o o —i !
GeP 1 =k o o [ o o o o o
H 1 o 1 o o i o o (] =
F&P o 1 B 0 o o o o o o
FDP o o 1 =3 o o o o o o
DHAP o o o 1 =t o o o o o
G3P o o o 1 1 i o o o o
NAD o o o o o -1 o o o o
Pl o o o o o =k o o o o
13DPG o o o o o 1 =i o o o
NADH o o o o o 1 o o o o
3PG o o o o o o 1 =3 o o
2PG o o o o o o o 1 =3 0
PEP o o o o o o o o 1 =k
H,O o o o o o o o o 1 o
PYR o o o o o o o o o 1

HEX1 PGl PFK FBA TPI GAPD PGK PCM ENO PYK

Figure 3.2: Stoichiometric representatidraanetabolic network.
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3.3 Dynamic models

3.3.1 Introduction

Perturbations o biochemical system, e.g. by gene modulation or drug treatment, can lead to global
effects that are by no means selident. To understand and predict its behavior we can oskef
systens biology. Systems biologys a biologybased intedisciplinary study field that focuses on the
systematic study of complex interactions in biological systems, using a new perspective (integration
instead of reduction) to study them. We His toy computer simulations, for which a mathematical model
of the biochemical networks is required. Using only the structure of a metabolic network, we can
calculate metabolic fluxes (reaction rates in steady state) by patbwegnstrainecdbased metha] such
as Flux Balance Analysis (FBA). However, such methods do not explain how rates are actually
influenced by the activities of enzymes and how they respond to perturbations. Also the stability of the
system in chemical equilibrium is not describedHig model.

These questions are answered by dynamic or kinetic models, which esnlilegrydifferential
equationfODE) to describe the temporal behavior of thetegysin a deterministic way. Thes®wdels
give the researchers a tooltnderstand and estimate the behavior of dynamically closed or open
systems such as metabolismo.illustrate the ODE approacén example of the GLUT transporter is
shown in Figure 3.

(A)

EXTERIOR CYTOPLASM

Glucose

(B)

Figure 3.3: (A) The four states of the GLUT transporter. (B) fabate kinetic diagram of a GLUT transporter.

The rates of the elementary process illustrated in the kinetic diagra), 216 determined by thaw of
mass actionThis law states that the rate of a reaction is proportional to the product of the concentrations
of the molecular species involved in the reaction. We déftnas the proportionality constant (rate
constant) and the forward rate fromeostate to the other is given hy= k* [];[C;]. It is now easy to

write down the system of ODEs. To do so one must keep track of the change that each elementary process

makes for each state. Thus the rate of transitiditatde, to State, is gven byk;,[G] X1, Wherex, is
the concentration of the first state.

12



Writing out the system of ODESs gives:

dx;

a5 = laalCGlousts + karXo = kaaXy + kagx

de

E = —k21x2 + k12 [G]outxl - k23x2 + k32x3
dX3

dx4,

E = —k41X4 + k14x1 - k43 [G]inx4 + k34x3

Using the package XPPAU(ttp://www.math.pitt.edu/~bard/xpp/xpp.hinb solve the system of ODEs
we constructed Figure 3.4, which shows the temporal behavior of the concentrations. The highest curve to
the lowest curve is the concentratiom@fx,, x; and x, respectively.

Figure 3.4: Concentration of the mlemuispecies over time.

Concentrations stop changing after a short time period. This is called chemical equilibrium or steady state
and indicates that the reaction rates for the production and degradation of the metabolites are equal. The
system of ODEs caalso conveniently be expressed as:

dx N#(%,k) (3.1)

— = Nv(X, :

dt

WhereX is the concentration vector, N the stoichiometric mafrithe reaction rate vectgin this case

expressed by law of mass actitam)jl-é the parameter vector. Steady state would indicate:

The reaction rate vectorstaysconstanendin this case also called the flux vecfoDue to a large
variance of enzymatic reactions the reaction rates can @lsmbeled by different rate laws than the law
of mass action. This shall be the topic of Chapter 4.

13



3.3.2 Thermodynamics and chemical equilibrium

We can describe a chemical reaction as a function of the thermodynamic driving force, ultimately
resulting inchemical equilibrium [1.1]. The occurrence of a reaction is also named a natural process or
spontaneous changgontaneous change that which, once initiated, proceeds on its own until some
state of equilibriunis attained. One could think of a ba#ing rolled up a mountain, containing potential
energy, and once released this potential energy is converted to kinetic energy ultimately let the ball roll
until it halts (the equilibrium state). To further understand this we first introduce some iniportan
properties of chemical systems.

Thermal energy or kinetic energy has the tendency to disperse as widely as possible and this is what
drives all spontaneous processes. To understand how the direction and extent of the spreading and sharing
of thermal enmgy is related to measurable properties of substances we introduce the entropy:

S:Entropy is a measure of the degree of spreading and sharing of thermal energy
within a system. This is also called the disorder of the system.

As a substance becomes more dispersed in space, the thermal energy is also spread over a larger volume,
leading to an increase in entropy. Although this holds for ideal gases and cannot be used for all solids or
liquids, it turns out that in a dilute soiom, the solute can often be treated as a gas dispersed in the

volume of the solution. This led to the following definition of the change of entropy as reflected by a
change of concentration 6f to C,.

AS = RIn (%) (3.3)

We define the change ofigopy in terms of another quantity namely hgatinder the assumption that
the temperature stays constant. For a process that exchanges a quantity of et the
surroundings, the entropy change is defined as.

qsur
AS =—— (34
(34

Becaus all natural processes lead to the spreading and sharing of thermal energy and because entropy is a
measure of the extent to which energy is dispersed in the world, it follows that

In any spontaneous macroscopic change, such as chemical reactions, thieogy of the world
increases
This is known as the second law of thermodynamics. The most important entropy in the definition of
thermodynamics is not the entropy of the system or surroundings, but the total entropy, called the entropy

of the world.

AStor = ASgys + ASgyr (3.5)

The only way the entropy of the surrounding changes is through exchange of heat with the
system:

AS,,, = % (3.6)

14



The most fundamental property of a chemical system is its Gibbs free dhéalgs energy tbreak the
chemical bonds that hold the atoms in a molecule together. Thermal energy, because it increases atomic
motion (increase in disorder), makes it easier for the atoms to be pulled apart. Both chemical bonding and
heat have a significant influence amolecule; the former reducing disorder, the latter increasing it. The

net effect, the amount of energy actually available to break and subsequently form other chemical bonds,
is called the free energy of that molecule. More generally, free energyrniedias the energy available to

do work in any system. For a molecule within a cell, where pressure and volume usually do not change,
the free energy is denoted@sThe free energy is defined by the energy contained in the chemical bonds,
enthalpyH, and the disorder and temperature in degrees Kelvif).(3.

G=H-TS3.7)

Chemical reactions break some bonds in the reactants and form new bonds in the products. Consequently,
reactions can produce changes in free energy. (3.

AG = AH — TAS (3.8)

This change in free energy is a fundamental property of chemical reactions. In some reactions, the change
of free energy is positive, indicating that the products of a reaction contain more free energy than its
reactants. These so called endergonic reastim not occur spontaneously as they require an input of

energy. Any chemical reaction tends to occur spontaneously if the difference in disorder between the
reactants and products is greater than the difference in bond energies. Bsh6) (8e can deve (39).

To perform the chemical reaction the heat is drawn from the surrounding:

ASior = ASsys + ASqyr = — q;’," + AS (3.9)
This can be written as the change of enthalpy:
AH
AStor = ==+ AS (3.10)

Multiplying both sides byT results in

—TAS, = AH — TAS (3.11)
and substituting-TAS;,; = AG gives (38).
In order to make use of free energieptedict the direction of thgpontaneous reactions, we need to
know the free energies of the individual components of a reactiothiSgurpose we can combine the
standard enthalpy of formation and the standard entropy of a substance tstgetisd free energy of
formation.

AGy = AHp» — TAS - (3.12)
and then determine the standard Gibbs free energy of the reactiamling to

AG® = Z AG (p) - Z AG(r) (3.13)

peproducts rereactants
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The symboP indicates that a quantity is measured under the standard conditions of 1 mole substance and
(usually) a temperature of 298 Ror a reactiod < B, one of tle following three situations will always

apply:
q3° <0  Forward reaction can spontaneously proceéd: Y B

qG° >0 Reverse reaction can spontaneously procedd: Y B

G = 0 the reaction is aquilibrium the quantities of A and B will not
B change

The free energy of a substance depends on its concentration. A higher concentration leads to more free
energy, thus the conversion of a molecule is accompanied by a fall in free energy. We express the change
in free energy when a substance undesgm change of concentration(@fto C, as:

Cy Cy G,
AG = AH — RTIn(=>) = 0 — RTIn(=) = RTIn(=2) (3.14)
C, C, C,

How can we evaluate the free energy of a specific sample at some arbitrary concentration? First, recall
that the standard molar free enef@fyis calculated with respect to a concentration of 1 mole. The free
energy per mole of our sample is just the sdithis value and any change in free energy that would

occur if the concentration were changed fromdle to the concentration of interest, C:

G = G’ + RTIn(C) (3.15)
Under conditions of constant temperature and pressure, chemical change will tenwt io athatever
direction leads to a decrease in the value ofaifsbs free energyWhen G falls as far as it can, all net
change comes to a stop. Let us assume that we have a reaction where substrates A and B are converted to
the products C and,Dhefree energy of substancs:a
G4 = G4 + RTIn(C,) (3.16)
The free energy change for the reaction is given by:

AG =G, + Gy — Gy — Gy (3.17)

Using equation (34) we expand (39):

AG = (GZ + RTln(CC)) + (Gy + RTIn(Cp)) — (G,;’ + RTln(CA)) - (G; + RTln(CB))

CcCp

= AG° + RTzn( ) = AG’ + RTIn(Q) (3.18)

A“B

As a chemical reaction takes plaGewill only decreaseEventually a point is reached where any further
transformation of reactants into products would cd@biseincreaseAs the eaction approaches
equilibrium,AG becomes finally reaches zero. At equilibrium we frconstant, also called the
equilibrium constant:

AG® = —RTin(K,,) (3.19)
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This equation is one of the most important in chemsnit relates the equilibrium estant to
measurable properties of the reactants and products. It is often useful to s@véo(3(],:

_ A6
Koq = e~ (3.20)

In kinetics the equilibrium constant is also the ratio of the rate constants of the reactants, for example:

+

ki
Keq = = (3.21)

A large number of parameter estimation methods try estimating these rate constants. A drawback is that
the ratio of the rate constants can change during the estinggithre relation between the rate constants
and the equilibrium constant has not been taken into acdmurthe equilibrium constanémains
constant as thenthalpies and entropies do not change. This implies that one would get an estimated
equilibriumconstant that is not equal the true equilibriconstant due to thermodynamidsettefore
violating the laws of thermodynamics, resulting in a dynamic model that does not occur in reality. These
relations pose thermodynamic constraints on the model paamet

There is an additional thermodynamic constraint called the Wegscheider condition. Section 3.1
was added to the supplement to fully discuss this phenomenon.
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3.4 Goals
The goals of the metabolic network and its dynamical model, taken fr@irejdid[16-17], are:

e Interpretation and evaluation of measured data:lt would be interesting to build a dynamic
model that is able to reproduce experimental data and study the behavior of the modeled system.

e Analysis of properties: Analysis d the model camelp to better understand the behavior of the
system. A downside of these methods is thayneed a very accurate modehere in practice
mostparameters of the model are unknown or corrupted by measuremenitexisstability
analysis can be used toadyze properties. Sectid2 was added to the supplementully
explain this type of analysis.

e Simulation: The simulation of the dynamic model could give insight into the behavior of the
system and give explanatory information about its dynamics.

e Optimisation: When a metabolic network is defined one can use it to improve the design of a
strain such as to have better performances.

e Prediction: A major goal of the metabolic networks is to build a validated metabolic network
that could predict the outcomé experimentations, such that most calculation can be idone
silico.

These goals can be divided into two complementing classes:

Gain knowledge systemWe would like to gain knowledge about the system. With informative analysis
we can understand and predict the complex behavior of the system. Some examples of knowledge we
could gain are: parameter sensitivityflux direction

Control the system:We woud like to reconstruct the system as accurately as possible to control system.
In this case we do not desire to gain any knowledge of the system, but would like that the model
reproduces the measurements as accurately as possible.

3.5 Limitations
Althoughthe modeling of metabolic networks has been frequently applied, it still is limited:

e Unknown model parameters:Much time has been spsmn the determination of model
parameters in a metabolic network. Most known parameters are stored in dataltasesl|
parameters are knowhhis is a limiting factor as we try to model tihevivosystem as complete
as possible.

¢ Uncertain model parameters:A major obstacle is that model parameters are corrupted by noise.

o Different conditions: Some parameters are estimated in experimental configurations different
from the one that you are trying to model. Due to biological variability this can lead to inaccurate
modeling and leads to inaccurate information and simulations.

e Missing reactions:Most of the reactions that play part in cuetabolism have been studied and
its results stored in databasbst notfor all. To account for these issues one could make use of
metabolic network alignment in different species to find missing reactions [18].

e Complexity: Metabolism is highly complex and hard to model, due to different levels of
regulation and high connectivity. Integrating the different levels of regulation has to this day not
been fully accomplished, resulting in a simplified model.
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Rate Laws
4.1 Introduction

Once the structure of a metabolic network is known it can be translated into a dynamicreupdiéhg

rate laws for all enzymatic reactions. The rate law for a chemical reaction is an equation that links the
reaction rate to concentias of reactants, pressure, temperature and the rate constants. Let us assume
that we have the following reaction:

nA+mB - C

We can make use of the law of mass action to specify the rate equation in terms of the reactants.

-

dx
= = k(A" [B]™ (4.1)
Where the functiok(T) is the rate constant, which should be better dubbed reaction rate coeffidgient as
depends on the temperatuass,seen in thArrhenius equation

Etl
k = Ae RT (4.2)

wherek is the reaction rate coefficient,the prefactor or frequency factof, the activation energy

the universal gas constant @hthe temperature in Kelvin. The activation energy is the energy that must
be overcome so that the reaction occurs. With the addition of a catalyst, surchreyme, this energy
barrier is much loweas shown irFigure 4.1andresults in a igher reaction rate coefficient.

A Activation energy
decreases with E
(enzyme)

Energy

: >
Reaction Progress
Figure 4.1: Energy barrier for the reaction where the substrate S is converted to the product P.

The rate equation of rate lawsdspendent on the underlying enzyme mechanism. With different enzyme
mechanisms, one should use different rate laws. A problem is that these rate equations can become quite
involved and may contain a large number of paramgdtarexamplereaction rate cefficients and

enzyme concentrationsor most enzymes the enzyme parameters are unkndah will be a topic of
discussion in the next chapter.

Enzyme assays are laboratory procedures that measure the rate of enzymatic reactions. Because
enzymes are ni@onsumed by the reactions they catalyse, enzyme assays usually follow changes in the
concentration of either substrates or products to measure the rate of reaction. The rkosiwretissay
is the initial rate experiments where the initial rate of atrea is determined. This is done by looking at
the concentration of the product over time as shiomigure 4.2 This curve has approximately a straight

19



line in the beginning, called the initial rate period, from which we can calculate the slopeophisssl
also called the initial reaction rate used frequently in metabolic modeling.

R

Product formed

Initial rate period

Time —»

Figure 4.2: Accumulation of the product over time

The law of mass action is defined for singtep reactions and its initial reaction rate can be
approximated by theufstrate concentrations and reaction rate coefficient as seen in (4.1).

Its assumptions are also a downside for getting the analytic rate equation. Most of the reactions in
metabolism are not performed by a single conversion stefhandte equatiodoes not model the
saturableenzymephenomenon.

4.2 Irreversible Michaelis -Menten rate law

A well-known rate law postulated in this section is the irreversible Michisleigen rate law. Let us first
introduce the enzymatic mechanism for this rate law:

1‘:1 k2
F + S = ES =— E + P
1{-1 kwﬁ

WhereE is the enzymeg the substrate;S the enzymesubstrate complex arftithe product.

The algebra needed to deal with a foesction system is very complex. To avoid this, Michaelis and
Menten assumed that the enzyme is irreversible, miistifrequently incorrect. Instead Briggs and
Haldane (1926, UK) limited their derivation to dealing withial ratesof reaction, when no product has
formed yet[P] = 0. In this casehe rate of binding of produdt; , is zero, and can be safely igndre
The system of ODEs for this reaction scheme is given by:

% = k7 [ES] - k{ [E][S] + ky[ES]
% = —k}[ENIS] + k7 [ES]
@ = k}[E][S] — kT [ES] — ko [ES]
APV _ 1 tes]

t 2
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Figure 4.3: i mu | ati on of sys em of ODEG&6s. Vertic
horizontal axis time [s]. (Red) Substrate, (White) Enzyme, (Yellow)i Product
(Orange)i EnzymeSubstrate complex.

Figure 4.3 illustrates the temporal behavior of the system of ODEs (S(0)=0.5, E(0) = 0.5) and shows that
the product trajectory behaves as illustrated in Figure Bh2. basic principle of the Brigg3daldane

theory is based on the observation that theti@arate rapidly attains a fixed ratg, implying that the
concentration [ES] is in Quasi Steashate. We can state that tihéial reaction ratey, is then entirely
described by reaction step 2, since all P formed must have passed just onceste@drhis implies

vy = k,[ES] (4.3)

We run into a problem, as at the beginning of the experiment we only know the initial substrate
concentratioriS], and the total enzyme concentrati@,. The concentration of the enzyrsebstrate is
normally not measurable, thus we need to make assumptions such that we can define the reaction rate
equation by these two available concentrations. Another fact that led to the derivation of the Michaelis
Menten rate law is that when one increases the concentration of the substrate that at a certain point the
initial reaction rate does nistcrease. This fact is shown kigure 4.4 where slope in the initial periauf

the product concentration curves daesincrease with an increase of subst@ta certain point

0 5 10 15 20 25 30 35 40
Figure 4.4: Product accumulation trajectories over time corresponding to different substrate concefithations.
substrate concentrations used are: 0.5 mM, 1mM, 5 mM, 10 mM, 15 mM and 20 mM.

21



This natural phenomenon is called enzyme saturation and happens frequently irF@aditgiven

enzyme concentration and for relatively low substrate concentrations, the reaction rate increases linearly
with substrate concentration; the enzyme molecaledargely free to catalyze the reaction, and

increasing substrate concentration indicates an increasing rate. However, at relatively high substrate
concentrations, the reaction rate asymptotically approaches the theoretical maximum; the enzyme active
sites are almost all occupied and the reaction rate is determined by the intrinsic turnover rate of the
enzyme.

The concentration of the enzyrabstrate complex changes much slower than that of the product and
substrate, hence changes on a different Soa¢e. For the rate equation we use the most comprehensible
derivation made by Higgs and Haldane. The complete derivediome found in the supplemesatction

4.1 Under the Quashteady state assumption we define:

d[ES
% = I [E1[S] — [ESI(KT + k) =0 (4.4)

Which we rewrite to:

[E1[S]
Kin

[ES] = (4.5)

Where the constaiif,, is the MichaelisMenten constant, which shall be discussed later in this section.
Using conservation laws (supplement) we can rewrite (4.5):

[ES] = [Ely—¢— (4.6)
1+ ﬁ
Substituting this expression in (4.3).
vy = ky[ES] = ky[E] ! :k[E]i:V i(47)
0 2 2 01+K_m 2 O[S]+Km max[S]_l_Km .

Giving the rate equation for the Michaelienten reaction scheme. First of all the rate equation is
dependent on the initial concentratiortlod substrate and the total enzyme concentration, which are

known at the beginning of the experiment. Figure 26 illustrated that if one would increase the substrate
concentration it would lead to an asymptotic limited initial reaction rate due to enziuretisa. This
phenomenon is also modeled by this rate equation as shown in Figure 4.5. The initial reaction rate is
bounded to the product of the reaction rate coefficient of step two times the total enzyme concentration as
the ratio in (4.7) goes to ugitvhen[S] > K,,. Such high substrate concentrations is rangie

appropriate measure to characterize an enzyme is the substrate concentration at which the initial reaction

rate reaches half of its maximum valé/%‘—l(ﬁ) (4.8). This is the case welgetsubstrate concentration is
equal to the Michaelidenten constant defined by48).

[S] V
Volis)=km = Vmaxm 5 = "éax (4.8)
S1=Km
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. N . Substrate concen_tration .
Figure 4.5: Initial reaction rate as a function of substrate concentration.

The MichaelisMenten rate equatibhas also some limitations. First of it is assumed that the rate of
change of the enzyrrubstrate complex is equal to zero, but this is not always theTtesquality of

the MichaelisMenten approximation depends on the timescale separation present in the dynamics, which
controls the magnitude of the rate of changgEs1. Another limitation is that the Michaeldenten

kinetics relies on the laws of ngaction, which, in turn, is derived from the assumptions of free diffusion
and thermodynamicalgdriven random collision. This is not always the case as the cytoplasm of a cell is
more gellike liquid due to the protein concentrations resulting in afmea diffusion and nerandom

collisions.

4.3 Reversible Michaelis -Menten rate law

The reversible MichaeliMenten is another rate law is commonly used in dynamic models and extends
the irreversible MichaeliMenten rate law. Let us first introduce theatéan scheme.

ki ko ks
E+ S=ES=EP=E 4+ P

Eq ks kig

From this reaction scheme we can deduce that there is an extra step, namely the conversion of the
enzymesubstrate complex to the enzyimeduct complex. We can also see that all the reactions are now
reversible. From this reaction scheme can construct the system of ODEs:

% = —k{ [E1[S] + ki [ES] + k2 [EP] — k3 [E][P]
M 1S + k8]
UES] 3 E11S) - kT LES] + k5 [EP] - K [ES)
afEp]

—— = kI [ES] — k3 [EP] + k3 [E][P] — k3 [EP]
% = ki[EP] — k3 [E][P]
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To derive the rate equation for this rate law we must make a simplifying assumption.

Equilibrium assumption: The dissociation of the enzyrsaebstrate complex and the enzypreduct
complex is much faster than the interconversion between the ersjoatate complex and the enzyme
product complex.

This implies thak; >» k, andk > k5. Therefore the first step and the third step are near equilibrium,
implying that the equilibrium constants or the reciprocal of them, named the dissociation coastants,
near there steaestate value. The dissociation constants of the first and the last step are:

_ ki _ENS] o
ST ki O[ES]
_ks _ [E][P]

» T T 0

The full derivation of the rate equatioan be found in the supplemessiction 4.2 Rewriting (4.9),
(4.10).

[ES] = [E], ) +% +[15;] (4.11)
s p
[11(';]

[EP] = [E], S (4.12)

=

The rate equation for the reversible Michadlienten reaction scheme is:

SIS [P)
- st $ K

vo([SI,[P]) = k3 [ES] — k; [EP] = NG (4.13)
1 +TS+K_p

Equation (4.13) introduces two new constants, namely the forward-ratel the backward raig.

These are defined as the maximum rate that can be acquired by the forward rate and backward rate just as
the definition ofl},,,, in the reversible MichaeliMenten rate law. This can be seen by setting for

instance the concentration of the product to zero which will reduce the equation to:

[S]

K, S
vo([S],0) =V} KS[S] =V (ﬁ) (4.14)
K

1+52
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In this context the dissociati@monstant behaves almost the same as the MickHdelsen constant and
can be shown by:

_k
=1F

kit kg

Ks iKm—T

But we made the assumption tiqt > k3 such that the constakj can be neglected:

For this rate law the sz rules apply for the irreversible Michaelkenten kinetics, such as enzyme
saturation. Although the reversible Michadlienten kinetics is a better approximation of the behavior of
enzymatic reaction rates it still has its limitations. The first litinitais that it does not model the
cooperative kinetics between enzymes. A second major limitation is that it fails to explain the allosteric
regulation of enzymes (e.g. feedback inhibition).

4.5 Convenience kinetics

4.5.1 Introduction

Dynamic modeling bmetabolic networks requires information about the enzymatic reactions. To capture
these enzymatic mechanisms all the reactions in an enzymatic climate are described by different rate laws,
such as the laws of mass action and linlog kinetics [28]. Otteedftindamental disadvantages of these

rate laws is that they fail to describe the enzyme saturation phenomenon and could be better modeled by
irreversible and reversible Michaelidenten rate laws. Other rate laws have been derived from specific
enzymaticnechanisms, but generally have a complicated mathematical expression and have to be
established separately for each reaction stoichiometry. One of the major disadvantages of metabolic
networks is that they are dependent on a large number of enzymatiepena(e.g. equilibrium

constants, MichaeliMenten constants and reaction rate coefficients). To model allosteric regulation one
has to gather an additional parameter.

Modifier constant: In metabolism some reaction rates are modified by inhibitorstivasars. These
modifiers bind to the allosteric site of the enzyme and influence its activity; its effect is quantified by
modifier constants.

Although we have information about a large number of parameters, using them is not so straightforward.
The metholic networks are handicapped by uncertain or unknown parameters (see chapter 3), but are
also constrained by thermodynamic constraisipglement S.1).

Thermodynamic constraints: Parameters are constrained by the thermodynamics of the system. If one
would construct a model which violates the laws of thermodynamics it is likely not to modeithe
system and produce inaccurate results or behaves differently.

If one would develop methods that estimate the enzyme model parameters, like pardimgter fit

optimization, it is likely that the estimated parameters violate the thermodynamic congasihts not
taken into account)
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4.5.2 Convenience kinetics

To take thermodynamic constraints into account Liebermeettat.[29] developed a rate law called
convenience kinetics, based on thermodynamically independent parameters, which is a direct
generalization of the reversible Michadlitenten rate law. One of the advantages is that it can describe
all possible stoichiometrs and enzyme regulation by modifiers. First we should state the assumptions of
this rate law:

e Randomorder: The substrates bind to the enzyme in an arbitrary order and are converted in
products, which dissociate from the enzyme in an arbitrary order.

e Rapid-equilibrium: The binding of substrates and products is reversible and much faster than
the conversion stefhis is the same as in reversible Michadlisnten.

e Reversibility: All reactions in the reaction scheme are assumed to be reversible.

e Binding energy: The binding energy of individual reactants does not depend on reactants already
bound to the enzyme.

For the |l ast assumption we should explain the ter
substrate and the enzyme hold the substrate iprtpeer orientation for the most effective catalysis. The

energy derived from this interaction is called the binding energy and used to lower the activation energy
barrier, and stabilize the transition state from the enzsuhstrate complex to the enzyim@duct

complex.This binding energy can be calculated usitapdard Gibbs free enerd¥/e shall derive the

convenience rate equation from a bimolecular reaction without enzyme regulation. Under the assumptions
made the reaction scheme would look like Fegu6.

T/E\ L ) i~
\ / S N /

A X: Reactants
B,Y:Products
Ey:Free enzyme
E4 Ex, Eg, Ey, Eax, Egy: Enzyme complexes
Figure 4.6: Reaction mechanism of a bimolecular reaction under convenience kinetics.

The dissociatin constant

Al[E
K} Jé% (4.15)

describes the balance of bound and unbouimdchemical equilibrium and is the reciprocal of the
equilibrium constantWe have also seen from (3-3.18) that the equilibrium constant can be expressed
by standard Gibbs free energies automatically implying that the dissociation constant can also be
expressed in standard Gibbs free ener@iels)

1 1 1
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